A Strong Law of Large Numbers for Partial-Sum Processes Indexed by Sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

A Strong Law of Large Numbers for Generalized Random Sets from the Viewpoint of Empirical Processes

In this article we prove a strong law of large numbers for Borel measurable nonseparably valued random elements in the case of generalized random sets.

متن کامل

Strong law of large numbers for fragmentation processes

In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1 ≥ η > ...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements

It will be shown and induced that the d-dimensional indices in the Banach spaces version conditions ∑ n(E‖Xn‖/|n|) < ∞ are sufficient to yield limmin1≤ j≤d(nj)→∞(1/ |nα|)∑k≤n ∏d j=1(1− (kj − 1)/nj)Xk = 0 a.s. for arrays of James-type orthogonal random elements. Particularly, it will be shown also that there are the best possible sufficient conditions for multi-indexed independent real-valued ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1984

ISSN: 0091-1798

DOI: 10.1214/aop/1176993390